skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shimizu, Cogan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Education is poised for a transformative shift with the advent of neurosymbolic artificial intelligence (NAI), which will redefine how we support deeply adaptive and personalized learning experiences. The integration of Knowledge Graphs (KGs) with Large Language Models (LLMs), a significant and popular form of NAI, presents a promising avenue for advancing personalized instruction via neurosymbolic educational agents. By leveraging structured knowledge, these agents can provide individualized learning experiences that align with specific learner preferences and desired learning paths, while also mitigating biases inherent in traditional AI systems. NAI-powered education systems will be capable of interpreting complex human concepts and contexts while employing advanced problem-solving strategies, all grounded in established pedagogical frameworks. In this paper, we propose a system that leverages the unique affordances of KGs, LLMs, and pedagogical agents – embodied characters designed to enhance learning – as critical components of a hybrid NAI architecture. We discuss the rationale for our system design and the preliminary findings of our work. We conclude that education in the era of NAI will make learning more accessible, equitable, and aligned with real-world skills. This is an era that will explore a new depth of understanding in educational tools. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Kirrane, Sabrina; Ngonga Ngomo, Axel-Cyrille; Kirrane, Sabrina; Ngonga Ngomo, Axel-Cyrille (Ed.)
    Reusing ontologies for new purposes, or adapting them to new use-cases, is frequently difficult. In our experiences, we have found this to be the case for several reasons: (i) differing representational granularity in ontologies and in use-cases, (ii) lacking conceptual clarity in potentially reusable ontologies, (iii) lack and difficulty of adherence to good modeling principles, and (iv) a lack of reuse emphasis and process support available in ontology engineering tooling. In order to address these concerns, we have developed the Modular Ontology Modeling (MOMo) methodology, and its supporting tooling infrastructure, CoModIDE (the Comprehensive Modular Ontology IDE – “commodity”). MOMo builds on the established eXtreme Design methodology, and like it emphasizes modular development and design pattern reuse; but crucially adds the extensive use of graphical schema diagrams, and tooling that support them, as vehicles for knowledge elicitation from experts. In this paper, we present the MOMo workflow in detail, and describe several useful resources for executing it. In particular, we provide a thorough and rigorous evaluation of CoModIDE in its role of supporting the MOMo methodology’s graphical modeling paradigm. We find that CoModIDE significantly improves approachability of such a paradigm, and that it displays a high usability. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)